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Sociopathic Knowledge Bases:

Correct Knowledge Can be Harmful
Even Given Unlimited Computation

David C. Wilkins and Yong Ma

Department of Computer Science
University of Illinois

405 North Mathews Avenue
Urbana, IL 61801

Abstract

This paper studies a situation is which correct knowledge is harmful to a prGblem

solver even given unlimited computational resources. A knowledge base is defined to be
sociopathic if all the tuples in the knowledge base are individually judged to be correct
and a subset of the knowledge base gives better performance than the original knowledge
base independent of the amount of computational resources that are available. Almost all
knowledge bases that contain probabilistic rules are shown to be sociopathic and so this
problem is very widespread.

Sociopathicity has important consequences for rule induction methods and rule set
debugging methods. Sociopathic knowledge bases cannot be properly debugged using the
widespread practice of incremental modification and deletion of rules responsible for wrong

conclusions a La Teiresias; this approach fails to converge to an optimal solution. The
problem of optimally debugging sociopathic knowledge bases is modeled as a bipartite graph
minimization problem and shown to be NP-hard. Our heuristic solution approach is called
the Sociopathic Reduction Algorithm and experimental results verify its efficacy.
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1 Introduction

Reasoning under uncertainty has been widely investigated in artificial intelligence. Prob-

abilistic approaches are of particular relevance to rule-based expert systems, where one is

interested in modeling the heuristic and evidential reasoning of experts. Methods devel-

oped to represent and draw inferences under uncertainty include the certainty factors used

in Mycin (Buc.anan and Shortliffe, 1984), fuzzy set theory (Zadeh, 1979), and the belief

functions of Dempster-Shafer theory (Shafer, 1976) (Gordon and Shortliffe, 1985). In many

expert system frameworks, such as Emycin, Expert, MRS, S.1, and Kee, the rule structure

permits a conclusion to be drawn with varying degrees of certainty or belief. This paper

addresses a concern common to all these methods and systems.

In refining and debugging a probabilistic rule set, there are three major causes of

errors: missing rules, wrong rules, and deleterious interactions between good rules. The

purpose of this paper is to explicate a type of deleterious interaction and to show that it (a)

is indigenous to rule sets for reasoning under uncertainty, (b) is of a fundamentally different

nature from missing and wrong rules, (c) cannot be handled by traditional methods for

correcting wrong and missing rules, and (d) can be handled by the method described in this

paper.

In section 2, we describe the type of deleterious rule interactions that we have en-

countered in connection with automatic induction of rule sets, and explain why the use of

most rule modification methods fails to grasp the nature of the problem. In section 3, we

discuss approaches to debugging and refining rule sets and explain why traditional rule set

debugging methods are inadequate for handling global interactions. In section 4, we for-

mulate the problem of reducing deleterious iateractions as a bipartite graph minimization

problem and show that it is NP-hard. In section 5, we present a heuristic method called

the Sociopathic Reduction Algorithm. Finally, our experiences in using the Sociopathic

Reduction Algorithm are described.

A brief description of terminology will be helpful to the reader. Assume there exists

a collection of training instances, each represented as a set of feature-value pairs of evidence

and a set of hypotheses.
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Rules are in Horn clause form: conclude(H, CF) :- E , where E is a conjunction of

evidence, H is a hypothesis, and CF is a certainty factor or its equivalent.

A rule that correctly confirms a hypothesis generates true positive evidence; one that

correctly disconfirms a hypothesis generates true negative evidence. A rule that incorrectly

confirms a hypothesis generates false positive evidence; one that incorrectly disconfirms a

hypothesis generates false negative evidence. False positive and false negative evidence can

lead to misdiagnoses of training instances.

2 Inexact Reasoning and Rule Interactions

When operating as an evidence-gathering system (Buchanan and Shortliffe, 1984), an ex-

pert system accumulates evidence for and against comapeting hypotheses. Each rule whose

preconditions match the gathered data contributes either positively or negatively toward

one or more hypotheses. Unavoidably, the preconditions of probabilistic rules succeed on

instances where the rule will be contributing false positive or false negative evidence for

conclusions. For example, consider the following rule:

conclude(klebsiella, 0.77) (R1)

finding(surgery, yes),

finding(gram-neg-nfection, yes)

The frequency with which R1 generates false positive evidence has a major influence

on its CF of 0.77, where -1 < CF < 1. Indeed, given a representative set of training

instances, such as a library of medical cases, the certainty factor of a rule can be given

a probabilistic interpretation' as a function G(z,, z 2, z3), where z is the fraction of the

positive instances of a hypothesis where the rule premise succeeds, thus contributing true

positive or false negative evidence; z 2 is the fraction of the negative instances of a hypothesis

where the rule premise succeeds, thus contributing false positive or true negative evidence;

'See Appendix I for a description of the function G. The calculations of G give a purely statistical inter-

pretation to CFs, and hence do not incorporate orthogonal utility measures as was done in MYCIN(Buchanan

and Shortliffe, 1984).
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and zx3 is the ratio of positive instances of a hypothesis to all instances in the training

set. For R1 in our domain, G(.43,.10,.22) = 0.77 by the formulas in Appendix A, because

statistics on 104 training instances yield the following values:

, :E true among positive instances = 10/23

X2 E true among negative instances = 8/81 (1)

X3 H true among all instances 23/104

Hence, R1 generates false positive evidence on eight instances, some of which may

lead to false negative diagnoses. But whether they do or not depends on the other rules

in the system; hence our emphasis on taking a global perspective. The usual method of

dealing with situations such as this is to make the rule fail less often by specializing its

premise (Michalski et al., 1983). For example, surgery could be specialized to neurosurgery,

and we could replace R1 with:

conclude(klebsiella, 0.92):- (R2)

finding(neurosurgery, yes),

finding(gram-neginfection, yes)

On our case library of training instances for the R2 rule, G(.26, .02, .22) = 0.92, so R2

makes erroneous inferences in two instances instead of eight. Nevertheless, modifying Ri

to be R2 on the grounds that R1 contributes to a misdiagnosis is not always appropriate;

we offer three objections to this frequent practice. First, both rules are inezact rules that

offer advice in the face of limited information, and their relative accuracy and correctness is

explicitly represented by their respective CFs. We expect them to fail, hence failure should

not necessarily lead to their modification. Second, all probabilistic rules reflect a trade-off

between generality and specificity. An overly general rule provides too little discriminatory

power, and a overly specific rule contributes too infrequently to problem solving. A policy

on proper grain size is explicitly or implicitly built into rule induction programs; this policy

should be followed as much as possible. Specialization produces a rule that usually violates

such a policy. Third, if the underlying problem for an incorrect diagnosis is rule interactions,

a more specialized rule, such as the specialization of RI to R2, can be viewed as creating

a potentially more dangerous rule. Although it only makes an incorrect inference in two
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instead of eight instances, these two instances will be now harder to counteract when they

contribute to misdiagnoses because R2 is stronger. Note that a rule with a large CF is more

likely to have its erroneous conclusions lead to misdiagnoses. This perspective motivates the

prevention of misdiagnoses in ways other than the use of rule specialization or generalization.

Besides rule modification, another common method of nullifying the incorrect infer-

ence of a rule in an evidence-gathering system is to introduce counteracting rules. In our

example, these would be rules with a negative CF that concludes Klebsiella on the false

positive training instances that lead to misdiagnoses. But since these new rules are prob-

abilistic, they will introduce false negatives on some other training instances, and these

may lead to misdiagnoses. We could add yet more counteracting rules with a positive CF

to nullify any problems caused by the original counteracting rules, but these additional

rules introduce false positives on yet other training instances, and these may lead to other

misdiagnoses. Also, a counteracting rule is often of less quality in comparison to rules in

the original rule set; if it were otherwise the induction program would have included the

counteracting rule in the original rule set. Clearly, adding counteracting rules may not be

necessarily the best way of dealing with misdiagnoses made by probabilistic rules.

3 Debugging Rule Sets and Rule Interactions

Assume we are given a set of probabilistic rules that were either automatically induced from

a set of training cases or created manually by an expert and knowledge engineer. In refining

and debugging this probabilistic rule set, there are three major causes of errors: missing

rules, wrong rules, and unexpected interactions among good rules. We first describe types of

rule interactions, and then show how the traditional approach to debugging is inadequate.

3.1 Types of rule interactions

In a rule-based system, there are many types of rule interactions. Rules interact by chaining

together, by using the same evidence for different conclusions, and by drawing the same

conclusions from different collections of evidence. Thus one of the lessons learned from

research on MYCIN was that complete modularity of rules is not possible to achieve when
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rules are written manually (Buchanan and Shortliffe, 1984). An expert uses other rules in a

set of closely interacting rules in order to define a new rule, in particular to set a CF value

relative to the CFs of interacting rules.

Automatic rule induction systems encounter the same problems. Moreover, automatic

systems lack an understanding of the strong semantic relationships among concepts to allow

judgments about the relative strengths of evidential support. Instead, induction systems

use biases to guide the rule search (Michalski et al., 1983). The rule sets that are later

analyzed for sociopathicity in this paper were generated by the induction subsystem of

ODYSSEUS. The inductive biases used in this system are rule generality, whereby a rule

must cover a certain percentage of instances; rule specificity, whereby a rule must be above

a minimum discrimination threshold; rule colinearity, whereby rules must not be too similar

in classification of the instances in the training set; and rule simplicity, whereby a maximum

bound is placed on the number of conjunctions and disjunctions (Wilkins, 1987).

3.2 Traditional methods of debugging a rule set

The standard approach to debugging a rule set consists of iteratively performing the fol-

lowing steps:

* Step 1. Run the system on cases until a false diagnosis is made.

* Step 2. Track down the error and correct it, using one of five methods pioneered by

Teiresias (Davis, 1982) and used by knowledge engineers generally:

- Method 1: Make the preconditions of the offending rules more specific or some-

times more general.2

- Method 2: Make the conclusions of offending rules more general or sometimes

more specific.

- Method 3: Delete offending rules.

- Method 4: Add new rules that counteract the effects of offending rules.

2Ways of generalizing and specializing rules are nicely described in (Michalski et al., 1983). They include

dropping conditions, changing constants to variables, generalizing by internal disjunction, tree climbing,
interval closing, exception introduction, etc.
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- Method 5: Modify the strengths or CFs of offending rules.

This approach may be sufficient for correcting wrong and missing rules. However,

it is flawed from a theoretical point of view, with respect to its sufficiency for correcting

problems resulting from the global behavior of rules over a set of cases. It possesses two

serious methodological problems. First, using all five of these methods is not necessarily

appropriate for dealing with global deleterious interactions. In section 2 we explained

why in some situations modifying the offending rule or adding counteracting rules leads to

problems, and misses the point of having probabilistic rules, and this eliminates methods 1,

2 and 4. If rules are being induced from a representative set of training cases, modifying the

strength of the rule is illegal, since the strength of the rule has a probabilistic interpretation,

being derived from frequency information derived from the training instances, and this

eliminates method 5. Only method 3 is left to cope with deleterious interactions. The

second methodological problem is that the traditional method picks an arbitrary case to

run in its search for misdiagnoses. Such a procedure will often not converge to a good

rule set, even if modifications are restricted to rule deletion. The example in section 5.2

illustrates this situation.

Our perspective on this topic evolved in the course of experiments in induction and

refinement of knowledge bases. Using "better" induction biases did not always produce

rule sets with better performance, and this prompted investigating the possibility of global

probabilistic interactions. Our original approach to debugging was similar to the Teiresias

approach. Often, correcting a problem led to other cases being misdiagnosed, and in fact this

type of automated incremental debugging seldom converged to an acceptable set of rules. It

might have if we we engaged in the common practice of "tweaking" the CF strengths of rules.

However this was not permissible, since our CF values were derived from a representative

set of training cases, and have a precise probabilistic interpretation,

4 Minimizing Sociopathic Interactions

Assume there exists a large set of training instances, and a rule set for solving these instances

has been induced that is fairly complete and contains rules that are individually judged to be

good. By good, we mean that they individually meet some predefined quality standards such
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as the biases described in section 3.1. Further, assume that the rule set misdiagnoses some

of the instance . in the training set. Given such an initial rule set, the problem is to find a

rule set that meets some optimality criteria, such as to minimize the number of misdiagnoses

without violating the goodness constraints on individual rules. Now modifications to rules,

except for rule deletion, generally break the predefined goodness constraints. And adding

other rules is not desirable, for if they satisfied the goodness constraints they would have

been in the original rule set produced by the induction program. Hence, if we are to find a

solution that meets the described constraints, the solution must be a subset of the original

rule set.3 More formally:

Definition 1 (Sociopathic Knowledge Base) A knowledge base is sociopathic if and

only if (1) all t 4e tuples in the knowledge base are individually judged to be good; and (2)

a subset of the knowl-dge base gives better performance than the original knowledge base

independent of the amount of available computational resources.

By the definition of a sociopathic knowledge base, the best rule set is viewed as th ,

element of the power set of rules in the initial rule set that yields a global minimum weighted

error. A straightforward approach is to examine and compare all subsets of the rule set.

However, the power set is almost b'ways too large to work with, especially when the initial

set has deliberately been generously generated. The selection process can be modeled as a

bipartite graph minimization problem as follows.

4.1 Bipartite graph minimization formulation

A bipartite graph G = (V, E) is a graph whose vertices V can be partitioned into two sets

V1 and V2 so that every edge in E joins a vertex in V1 to a vertex in V2. For each hypothesis

in the set of training instances, defue a directed bipartite graph G = (V, E), with its

vertices V partitioned into two sets I and R, as shown in Figure 1. Elements of R represent

rules, and the evidential strength of Ri is denoted by CFj. Each vertex in I represents a

training instance; for positive instances Mi is 1, and for negative instances Mi is -1. Arcs

[Rj, IiI connect a rule in R with the training instances in I for which its precon&>fions are
3If we discover that this solution is inadequate for our needs, then introducing rules that violate the

induction biases is justifiable.
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I
I

I satisfied; the weight of arc [Ri, Ii] is CFi. The weighted arcs terminating in a vertex in I

are combined using an evidence combination function F, which is defined by the user. The

Icombined evidence classifies an instance as a positive instance if the combined evidence is

above a user specified threshold CFt. In the example in section 5.2, CF is 0, while for

3 Mycin, CFt is 0.2.

i Instance Set Rule Set

I1 (MI) 9 R, (CF 1)

12 (M 2 ) R 2 (CF 2 )

I
I

Im(Mm) • Rn (CF,)

Figure 1: Bipartite Graph Formulation. The left hand nodes, I M,..., Im
represent a case library of m training instances, where Mi indicates
whether an instance is a positive or negative example of a hypothesis.
The right hand nodes, Rl,..., R represent a knowledge base of prob-

abilistic rules, where CFj is the strength of the rule. The links show
which training instances I1,..., Im satisfy the preconditions of rule Ri.1

More formally, assume that I 1 ... , I,, = training set of instances, and R 1 , ..., Rn =9 rules of an initial rule set. Then we want to minimize:

M
z = Zbiei (2)

subject to the constraints

3 J 0 if F(alr1 ,...,a,,r, > CF forM, 1

ei= 0 if F(aiiri,...,ainrn) <_ CFt for Mi = -1 (3)

3 1 otherwise

*10



Un
> Rrn (4)

I where

£ = bias constant to preferentially favor instances;

3 ri = if R1 is in solution rule set then 1 else 0;

aij if arc [Rj,Ii] exists then CF else 0;

CFt = the CF threshold for positive classification;

F = n-ary function for combining CFs, where

the time to evaluate is polynomial in n;

5 Rmin, minimum number of rules in solution set;

The problem is to find a subset of R such that the global weighted error z is minimum.

That is, the solution formulation solves for rj; if rj = 1 then rule Ri is in the final rule

set. The main tasks of the user are to specify the evidence combination function F and

to set up the aij matrix, which associates rules and instances and indicates the strength of

the the associations. Note that the value of aij is zero if the preconditions of Rj are not

satisfied in instance Ii. Preference can be given to particular instances via the bias bi in the
objective function z. For instance, the user may wish to favor the selection of rules that3 will not misdiagnose certain instances by setting the corresponding bi to a very high value.

The Rmin constraint forces the solution rule set to be above a minimum size. This prevents

finding a solution that is too specialized for the training set, giving good accuracy on the
training set but having a high variance on other sets, which would lead to poor performance.

Theorem 1 The bipartite graph minimization problem for heuristic rule set optimization

is NP-hard.

Proof: To show that the bipartite graph minimization problem (BGMP) is NP-hard, we

shall reduce Satisfiability problem (SAT) to it. The major difficulty is that we have to use
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numerical combination functions to determine logical truth values of clauses. Assume there

are I boolean variables A,..., A and k clauses C1, C 2, ... , C, where Ci is a disjunction of

some literals. For example, C 4 = A1 V A3 V A 4.

1. Input transformation: SAT clauses are mapped into graph instance nodes and the

atoms of the clauses are mapped into rule nodes. Arcs connect rule nodes to instance nodes

when the respective literals appear in the respective clauses. Let m = k and n = I. Let

each clause represent a positive instance, then set Mi = 1 for 1 < i < m. Let CFj to be 1

for j = 1,2, ..., n. For each instance node Ii (corresponding to Ci), define the combination

function as follows:
n

F(ailr=,...,ainrn) 1- n(1 - g(aijrj)) (5)
ji=1

where
aijrj if Aj appears in Ci

g(a 1iri) = 1 - aijr, if Aj appears in Ci (6)

0 otherwise

Note that aij = CFj = 1 if either Aj or Aj appears in Ci. Thus the g(aijrj) function can

be simplified to:
ri if Aj appears in Ci

g(aijri) = 1 - rj if Aj appears in Ci (7)
0 otherwise

Since every clause is of the same importance, let bi = 1 for all i, for the objective

function z. Let Rnn = 0 to make its associate constraint trivially true. Finally, choose

CFt to be 0.

2. Output transformation: The output transformation is that (1) if Rj remains "n

the final rule set, Aj is assigned to be true; otherwise, it is assigned to be false; (2) SAT is

satisfied only if z = 0, i.e., all the instances are correctly classified.

3. Justification: First, it is clear that the input and output transformations can be

performed in polynomial time. Second, we will show that Ci is satisfied iff the corresponding

Ii is correctly classified in the final rule set, i.e., ei = 0. To help understand the functionality

of g(aijri), let us rewrite it as follows:

12



II

3 J1 ifAj appears in Ci and ri = 1, or

g(aijrj) = if Ai appears in Ci and rj = 0 (8)

0 otherwise

If part: Assume that ei 0, i.e., F(aiirl, ...,air,) > 0 (F must be 1), then at least

one g(aijrj) is 1. By the definition of g(aijrj) above, either Aj appears in Ci and rj = 1 or

. j appears in Ci and rj = 0. In either case, according to the output transformation, the

corresponding clause Ci is satisfied (true).

Jnly if part: Assume that Ci is satisfied by the truth assignment in the final rule

set. Then there must exist some atom Aj such that either Aj is in Ci and it is assigned to

be true or Aj is in Ci and assigned to be false. In either case, g(aijrj) = 1, by the output

transformation and the definition of the function. Therefore, F(ailrl, ..., ainr,,) 1 and

3 ei =0.

To summarize, g(aijrj) being 1 corresponds intuitively to the positive contribution

made by Aj to Ci.

Finally, it's shown that SAT is satisfiable iff BGMP so constructed has a minimum

objective value 0. If BGMP has a solution with z = 0, then ei = 0 for all i, because

bi = 1. Therefore each Ci is satisfied and thus SAT is satisfiable. Conversely, if the SAT

is satisfiable then each Ci can be satisfied by some truth assignment of atoms. Clearly,

the final rule set of the 13GMP formulation (of SAT) can be easily constructed with z = 0,

according to that assignment. C

Corollary 1 Given a positive real number B, the problem of determining if there exists

a rule set whose global weighted error z is less than or equal to B in the bipartite graph

formulation for heuristic rule set optimization is NP-complete.

Proof: To show that this decision problem is in NP, we notice that it is easy to construct

a polynomial algorithm for checking whether or not the (weighted) number of misdiagnosis

by any given subset of R is less than or equal to B. It is NP-hard by an argument similar

to that in the proof of the above theorem. 0
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5 Sociopathic Reduction Algorithm

In this section, a heuristic method called the Sociopathic Reduction Algorithm is described,

and an example is provided based on the graph shown in Table 1.

5.1 The Sociopathic Reduction Algorithm

The following heuristic hill-climbing search method, the Sociopathic Reduction Algorithm,

is one that we have developed and used in our experiments:

* Step 1. Assign values to penalty constants. Let p1 be the penalty assigned to a

poison rule. A poison rule is a strong rule giving erroneous evidence for a case that

cannot be counteracted by the combined weight of all the rules in the rule base that

give correct evidence. Let p2 be the penalty for contributing false positive evidence

to a misdiagnosed case, p3 be the penalty for contributing false negative evidence to

a misdiagnosed case, p4 be the penalty for contributing false positive evidence to a

correctly diagnosed case, p5 be the penalty for contributing false negative evidence

to a correctly diagnosed case, and p6 be the penalty for using weak rules. Let h be

the maximum number of rules that are removed at each iteration. Let R,i, be the

minimum size of the solution rule set.

9 Step 2. Optional step for very large rule sets: given an initial rule set, create a new

rule set containing the n strongest rules for each case.

* Step 3. Find all misdiagnosed cases for the rule set. If none exists, stop. Otherwise,

collect and rank the rules that contribute evidence toward these erroneous diagnoses.

The rank of rule Ri is Z?=P p;fij, where:

- n1 j = 1 if Rj is a poison rule or its deletion leads to the creation of another

poison rule and 0 otherwise.

- n2j = the number of misdiagnoses for which R gives false positive evidence;

- n3 j = the number of misdiagnoses for which Rj gives false negative evidence;

- n4j = the number of correct diagnoses for which Rj gives false positive evidence;

14



- nsi = the number of correct diagnoses for which Rj gives false negative evidence;

- n6j = the absolute value of the CF of Rj;

" Step 4. Eliminate the h highest ranking rules.

" Step 5. If the number of misdiagnoses is decreased, go to step 3.

" Step 6. Else, if the number of misdiagnoses begins to increase and h $ 1, then

- Undo the last deletion, i.e., take back the most recently removed h rules. 4

- h - h -.

- Goto step 3.

" Step 7. Otherwise, i.e., if the number of misdiagnoses is increased and h = 1, then

undo the last rule deletion; output the final rule set and stop.

Each iteration of the algorithm produces a new rule set, and each rule set must be

rerun on all training instances to locate the new set of misdiagnosed instances. If this is par.

ticularly difficult to do, the h parameter in step 4 can be increased, but there is the potential

risk of converging to a suboptimal solution. For each misdiagnosed instance, the automated

reasoning system that uses the rule set must be able to explain which rules contributed to

a misdiagnosis. Hence, we require a system with good explanation capabilities.

The nature of an optimal rule set differs between domains. Penalty constants, pi,

are the means by which the user can define an optimal policy. For instance, via p2 and

p3, the user can favor false positive over false negative misdiagnoses, or visa versa. For

medical expert systems, a false negative is often more damaging than a false pobitive, as

false positives generated by a medical program can often be caught by a physician upon

further testing. False negatives, however, may be sent home, never to be seen again.

In our experiments, the value of the six penalty constants was pi = 106 - i . The h

constant determines how many rules are removed on each iteration, and its value is about

5. Rminr is the minimum size of the solution rule set, usually about 90% of the original set;

its usefulness was described in section 4.1.

4It is this step that makes it a hill-climbing algorithm.
'Since the h is usually small, say about 5, the next incremental step of 1 is the simplest, although the

more complicated schema of step decrements can be implemented for a relatively big number of h.
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I\R Rl(+.33)" R2(+.75) R3 (+.33) R 4(-.33)0 Rs(-.75)c R6(-.33)

Io(+) X

I,(+) x x
12(+) x x x x

13(+) x x x x

14(+)* x x x x
(-" x x x

J(-)t x x x x

17(-) x x

s( -) X X X X

II(-) X X

Table 1: An example for Sociopathic Reduction algorithm. There are
ten training instances that are classified as positive (+) or negative (-)
instances of the hypothesis. There are six rules shown with their CF
strength. The marks indicate the instances to which the rules apply, i.e.,
when an instance satisfies the premises clauses of a rule.

5.2 Example of sociopathic reduction

In this example, which is illustrated in Table 5.1, there are ten training instances I0,. . .,9,

classified as positive or negative instances of the hypothesis. There are six rules Rl,..., R6

shown with their CF strength. The marks (x) indicate the instances to which the rules

apply, i.e., when an instance satisfies the premises clauses of a rule. To simplify the example,

define the combined evidence for an instance as the sum of the evidence contributed by all

applicable rules, and let CFt = 0. Rules with a CF of one sign that are connected to an

instance of the other sign contribute erroneous evidence. Two cases in the example are

misdiagnosed: 14 and Is. The objective is to find a subset of the rule set that minimizes the

number of misdiagnoses. Before the details are examined, the following points concerning

examples should be made.

First, it can be shown that it is impossible to have an example using rules with out

degree less than 5 that has all the points to be made from this example, if there are the equal

number of positive and negative training instances. The argument is trivial for the rules

with out degree of 1 and 2. For a rule with out degree of 3, assume that it has a positive CF

value and is to be deleted. Then, it must misdiagnose some negative instance to become a
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rule to be blamed. And, in order to have a positive CF, it must provide (positive) evidence

for two positive instances, provided that the number of positive instances is equal to that

of negative instances. Therefore, the number of correct diagnoses for which it gives false

positive evidence must be zero, since the only negative instance that it connects to is the

misdiagnosed one. Then, its ranking vector is (n13 , n 2j, n3j, n4j, nsi, n6 j) (0, 1, 0, 0, 0, CF)

which results in the smallest ranking quantity that a blamed rule with positive CF can have.

Thus, the algorithm will not guarantee to chose it for deletion. The argument for rules with

out degree of 4 is similar to the above, or the CF values are zeroes if the rules connect

to two positive instances and two negative ones. It may be possible to devise a heuristic

algorithm which gives a better computational performance from this observation.

The second point to make is that the CF values attached to the rules are the real

values that are calculated based on the formula given in the appendix. Take R1(+.33) for

example.

zi :E true among positive instances = 3/5

2: E true among negative instances = 2/5 (9)

Z3: H true among all instances = 5/10

Then,

X4 =3 0.60 (10)
;T13 + X2(1 - Z3)

Since X4 > X3,

CF = X4- -X3 0.33 (11)X4(1 - Z3) 3

Now the examination of the example is to be preceded. Assume that the final rule

set must have at least four rules, hence Rmin = 4. Let pi = 106-i, for 0 < i < 5, thus

choosing rules in the highest category, and using lower categories to break ties.

On the first iteration, two misdiagnosed instances are found, 14 and Is, and four rules

contribute erroneous evidence toward these mlisdiagnoses, R 1, R 2, R 4, and R5 . Their ranking

vectors are shown in Table 2. Clearly, R1 has the highest ranking quantity s pin11 , thus
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nij nzj n3j n4j nsj nej

R1  0 1 0 1 0 0.33

R 2  0 1 0 0 0 0.75

R 4  0 0 1 0 1 0.33

Rs 0 0 1 0 0 0.75

Table 2: The ranking vectors of blamed rules

it is chosen for deletion. On the second iteration, one misdiagnosis is found, 14, and two

erroneous rules contribute erroneous evidence, R 4 and R5 . Rules are ranked and R 4 is

deleted. This reduces the number of misdiagnoses to zero and the algorithm successfully

terminates.

The same example can be used to illustrate the problem of the traditional method of

rule set debugging, where the order in which cases are checked for misdiagnoses influences

which rules are deleted. Consider a Teiresias style program that looks at training instances

and discovers 14 is misdiagnosed. There are two rules that contribute erroneous evidence to

this misdiagnosis, rules R 4 and Rs. It wisely notices that deleting R 4 causes 16 to become

misdiagnosed, hence increasing the number of misdiagnoses; so it chooses to delete R5 .

However, no matter which rule it now deletes, there will always be at least one misdiagnosed

case. To its credit, it reduced the number of misdiagnoses from two to one; however, it fails

to converge to an rule set that minimizes the number of misdiagnoses.

5.3 Experience with the Sociopathic Reduction Algorithm

Some preliminary experiment with the Sociopathic Reduction Algorithm has been com-

pleted, using the Mycin case library which is a collection of 112 solved cases that were

obtained from records at the Stanford Medical Hospital. The rule set of about 370 rules

was the one after (1) correcting an incorrect domain theory, and (2) using apprenticeship

learning to extend an incomplete domain theory (Wilkins and Tan, 1989). The Sociopathic

Reduction Algorithm removed 21 rules from the knowledge base after 8 iterations. In Table

3, it is shown that about 10% improvement over the knowledge base tested is obtained.

Although our work is pretty much theoretical research oriented one example of ex-

periments is not sufficient by any means. Thus, our ongoing experiments involve two kinds
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Disease Number Before Reduction After Reduction

Cases
TP FN FP TP FN FP

Bacterial Meningitis 16 14 2 13 12 4 4

Brain Abscess 7 1 6 0 1 6 0

Cluster Headache 10 8 2 0 8 2 0

Fungal Meningitis 8 3 5 0 4 4 0

Migraine 10 6 4 0 7 3 0

Myco-TB Meningitis 4 4 0 1 4 0 3
Primary Brain Tumor 16 3 13 0 10 6 1

Subarach Hemorrhage 21 16 5 3 16 5 4

Tension Headache 9 8 1 3 8 1 1

Viral Meningitis 11 10 1 12 10 1 6

None 0 0 0 7 0 0 12

Totals 112 73 39 39 80 32 32

Table 3: The Sociopathic Reduction Algorithm, when applied to this
knowledge base, improves the performance by about 10%.

of tests. First, we divide the cases into a training set and a validation set with 70% vs.

30% each, so that it can be shown that the performance improvement is carried over to the

validation set. To be more accurate, we would like to randomly split the cases five times

and then average the improvements. Second, we like to apply the method just described to

various knowledge bases available, for example, a knowledge base after correction of wrong

rules only, a knowledge base after case-based learning application, and so on.
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6 Related Work

The original contribution of this paper is to show that correct knowledge can be harmful

independent of problem-solving efficiency and that this problem is widespread. Another

contribution is to show that the problem of harmful knowledge can be minimized and

problem-solving performance improved by a particular form of knowledge base reduction,

and that the optimal reduction is NP-hard.

The theme of correct knowledge being harmful has been studied by a number of other

investigators. Minton has investigated how the learning of correct search control knowledge

can slow down a problem solver; his solution approach is to quantify the potential utility

of a new piece of control knowledge and only add those with a high utility (Minton and

Carbonell, 1987). Markovitch and Scott have shown that any deductively learned knowledge

effects the cost of searching a problem space; their solution approach is to use filter functions

that can determine whether a piece of past knowledge that has been deductively learned

should be used on a current problem (Markovitch and Scott, 1989). Still another approach

is to modify learned search control knowledge to increase problem-solving speed (Prieditis

and Mostov, 1987).

The theme of improving problem-solving accuracy via knowledge base reduction has

been studied in conjunction with eliminating or reducing wrong knowledge. For example,

the genetic algorithm used in conjunction with a classifier system eliminates as much as half

of a knowledge base; it eliminates rules that has not contributed to past problem-solving

successes (Holland, 1986). Another approach is to perform a global analysis of a knowledge

base and eliminate those rules that are redundant or inconsistent (Ginsberg et al., 1988).

Learning systems that perform induction from noisy training instances have also

addressed the problem of wrong knowledge. The RULEMOD program of META-DENDRAL

selects a subset of rules that have wide applicability, thereby reducing the number of wrong

rules (Buchanan and Mitchell, 1978). RULEMOD also selects rules that jointly form a

good global cover and hence shares our concern for finding rules that work well together.

The TRUNC program of AQi5 deletes those disjunctions of non-probabilistic induced rules

that cover the fewest cases (Michalski et al., 1986a; Michalski et al., 1986b). The reduced

knowledge bases produced by RULEMOD and TRUNC give equal or superior performance.
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7 Summary and Conclusion

Traditional methods of debugging a probabilistic rule set are suited to handling missing

or wrong rules, but not to handling deleterious interactions between good rules. This

paper describes the underlying reason for this phenomenon. We formulated the problem

of minimizing deleterious rule interactions as a bipartite graph minimization problem and

proved that it is NP-hard. A heuristic method was described for solving the graph problem,

called the Sociopathic Reduction Algorithm. In our experiments, the Sociopathic Reduction

Algorithm gave good results.

We believe that the rule set refinement method described in this paper, or its equiv-

alent, is an important component of any learning system for automatic creation of proba-

bilistic rule sets for automated reasoning systems. All such learning systems will confront

the problem of deleterious interactions among good rules, and the problem will require a

global solution method, such as we have described here.

Our future research in this area is to create a theory of sociopathicity that subsumes

all AI techniques for uncertainty reasoning, including certainty factors, Bayesian methods,

probability methods, Dempster-Shafer theory, fuzzy reasoning, belief networks, and non-

monotonic reasoning. For our progress to date, see (Ma and Wilkins, 1990a; Ma and

Wilkins, 1990b; Ma and Wilkins, 1990c).

8 Acknowledgements

We thank Marianne Winslett for suggesting the bipartite graph formulation and for detailed

comments, and thank Bruce Buchanan for earlier major collaboration on this work (Wilkins

and Buchanan, 1986). We also express our gratitude for the helpful discussions and critiques

provided by Bill Clancey, Ramsey Haddad, David Heckerman, Eric Horovitz, Curt Langlotz,

Peter Rathmann and Devika Subramanian.

This work was supported in part by NSF grant MCS-83-12148, ONR grant N00014-

88K-0124, and an Arnold 0. Beckman research award to the first author. We are grateful for

the computer time provided by the Intelligent Systems Lab of Xerox PARC and SUMEX-

AIM at Stanford University.

21



I

Appendix 1: Calculating G.

Consider rules of the form conclude(H, CF) :- E. Then CF = G = G(zj, X2, z3) = empirical

predictive power of rule R, where:

" z* = P(E+IH+) = fraction of the positive instances in which R correctly succeeds

(true positives or false negatives)

* X2 = P(E+IH- ) = fraction of the negative instances in which R incorrectly succeeds

(false positives or true negatives)

" z 3 = P(H+) = fraction of all instances that are positive instances

Given XI, X2, X3, let

S = P(H+E+) =

If z 4 > X3 thenG = - else G .

This probabilistic interpretation reflects to the modifications to the certainly factor

model proposed by (Heckerman, 1986).
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